TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 5: The Real Spectral Theorem

Recap

- Eigenvectors and eigenvalues, eigenvectors of same eigenvalue form a subspace. Eigenvectors of different eigenvalues are linearly independent, inner products, norm, Cauchy-Schwartz.
- Gram-Schmidt orthogonalization, any finite-dimensional inner product space has an orthonormal basis.
- Properties of orthonormal bases: Fourier coefficients, Parseval's identity
- Adjoint of a linear transform
- Reisz representation theorem. Use to prove that every linear transformation has a unique adjoint
- Self-adjoint linear operators: eigenvalues are real, and eigenvectors corresponding to distinct eigenvalues are orthogonal.

Assume *V* is finite-dimensional

Theorem: every self-adjoint operator $\varphi: V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

- E.g., square symmetric matrices over \mathbb{R}^n .
- Gives a nice way to view action of such operators. Say φ has orthonormal eigenvectors w_1, \dots, w_n with associated eigenvalues $\lambda_1, \dots, \lambda_n$. Then:

For
$$v = \sum_i c_i w_i$$
, we have $\varphi(v) = \sum_i \lambda_i c_i w_i$.

I.e., just stretching or shrinking in each "coordinate".

Assume *V* is finite-dimensional

Theorem: every self-adjoint operator $\varphi: V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

Proof strategy:

- 1. Show that any such φ has at least one eigenvalue.
- 2. Use (1) to prove the theorem.

We'll do (2) first, then (1).

Assume *V* is finite-dimensional

Theorem: every self-adjoint operator $\varphi: V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

Proof part 2: induction on dimension of V.

- Base-case: $\dim(V) = 1$. By part (1), there is at least one eigenvalue and eigenvector, so just scale the eigenvector to be unit-length.
- Let $\dim(V) = k + 1$. Let w be the eigenvector we are guaranteed by part (1) and let $W = span(\{w\})$. Let $W^{\perp} = \{v \in V : \langle v, w \rangle = 0\}$.
- Now, the idea to finish is to (a) show that W^{\perp} is a subspace of V of dimension k, (b) show that φ restricted to W^{\perp} is a self-adjoint operator on W^{\perp} (and in particular maps W^{\perp} to W^{\perp}), and (c) apply our inductive hypothesis to W^{\perp} (which by design is orthogonal to w).

Assume *V* is finite-dimensional

Theorem: every self-adjoint operator $\varphi: V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

(a): If $\langle v_1, w \rangle = 0$ and $\langle v_2, w \rangle = 0$ then $\langle a_1 v_1 + a_2 v_2, w \rangle = 0$, so it's a subspace. Dimension is k because a basis for $W^{\perp} \cup \{w\}$ is a basis for V.

• Now, the idea to finish is to (a) show that W^{\perp} is a subspace of V of dimension k, (b) show that φ restricted to W^{\perp} is a self-adjoint operator on W^{\perp} (and in particular maps W^{\perp} to W^{\perp}), and (c) apply our inductive hypothesis to W^{\perp} (which by design is orthogonal to w).

Theorem: every self-adjoint operator $\varphi: V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

(b): If $\langle v, w \rangle = 0$ want to show that $\langle \varphi(v), w \rangle = 0$.

- We can use the fact that φ is self-adjoint and w is an eigenvector.
- $\langle \varphi(v), w \rangle = \langle v, \varphi(w) \rangle = \langle v, \lambda w \rangle = \lambda \langle v, w \rangle = 0.$

• Now, the idea to finish is to (a) show that W^{\perp} is a subspace of V of dimension k, (b) show that φ restricted to W^{\perp} is a self-adjoint operator on W^{\perp} (and in particular maps W^{\perp} to W^{\perp}), and (c) apply our inductive hypothesis to W^{\perp} (which by design is orthogonal to w).

Theorem: every self-adjoint operator $\varphi: V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

(c): Now, just apply induction.

- Let $\{w_1, ..., w_k\}$ be an orthonormal basis for W^{\perp} of eigenvectors of φ restricted to W^{\perp} .
- So, $\{w_1, \dots, w_k, \frac{w}{\|w\|}\}$ is an orthonormal basis for V of eigenvectors of φ .
 - Now, the idea to finish is to (a) show that W^{\perp} is a subspace of V of dimension k, (b) show that φ restricted to W^{\perp} is a self-adjoint operator on W^{\perp} (and in particular maps W^{\perp} to W^{\perp}), and (c) apply our inductive hypothesis to W^{\perp} (which by design is orthogonal to w).

Assume *V* is finite-dimensional

Theorem: every self-adjoint operator $\varphi: V \to V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

Proof strategy:

- 1. Show that any such φ has at least one eigenvalue.
- 2. Use (1) to prove the theorem.

Now, need to do (1).

Let's begin by assuming V is over \mathbb{C} . Then won't need self-adjointness.

Example:
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

Let's begin by assuming V is over \mathbb{C} . Then won't need self-adjointness.

Proposition 2.1 *Let* V *be a finite dimensional inner product space over* \mathbb{C} *and let* $\varphi : V \to V$ *be a linear operator. Then* φ *has at least one eigenvalue.*

Proof: Let dim(V) = n. Let $v \in V \setminus 0_V$ be any non-zero vector. Consider the set of n+1 vectors $\{v, \varphi(v), \varphi^2(v), \dots, \varphi^n(v)\}$ where $\varphi^i(v) = \varphi(\varphi^{i-1}(v))$. Since the dimension of V is n, there must exist $c_0, \dots, c_n \in \mathbb{C}$ not all 0 such that

$$c_0 \cdot v + c_1 \cdot \varphi(v) + \cdots + c_n \varphi^n(v) = 0_V.$$

For convenience, assume that $c_n \neq 0$, otherwise we can instead consider the sum to the largest i such that $c_i \neq 0$. What we want to do now is to factor the expression above into a product of degree-1 terms. This is where working over \mathbb{C} will be useful.

Let's begin by assuming V is over \mathbb{C} . Then won't need self-adjointness.

Proposition 2.1 *Let* V *be a finite dimensional inner product space over* \mathbb{C} *and let* $\varphi : V \to V$ *be a linear operator. Then* φ *has at least one eigenvalue.*

OK, so we have $c_0v + c_1\varphi(v) + \cdots + c_n\varphi^n(v) = 0_V$ with $c_n \neq 0$.

Let P(x) denote the polynomial $c_0 + c_1x + \cdots + c_nx^n$. Then the above can be written as $(P(\varphi))(v) = 0$, where $P(\varphi): V \to V$ is a linear operator defined as

$$P(\varphi) := c_0 \cdot \mathsf{id} + c_1 \cdot \varphi + \cdots + c_n \varphi^n$$
,

with id used to denote the identity operator. Since P is a degree-n polynomial over \mathbb{C} , it can be factored into n linear factors, and we can write $P(x) = c_n \prod_{i=1}^n (x - \lambda_i)$ for $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$. This means that we can write

$$P(\varphi) = c_n(\varphi - \lambda_n \cdot id) \cdot \cdot \cdot (\varphi - \lambda_1 \cdot id)$$
.

Let's begin by assuming V is over \mathbb{C} . Then won't need self-adjointness.

Proposition 2.1 *Let* V *be a finite dimensional inner product space over* \mathbb{C} *and let* $\varphi : V \to V$ *be a linear operator. Then* φ *has at least one eigenvalue.*

OK, so we have $P(\varphi) = c_n(\varphi - \lambda_n \cdot id) \dots (\varphi - \lambda_1 \cdot id)$, and $P(\varphi)(v) = 0$.

Let $w_0 = v$ and define $w_i = \varphi(w_{i-1}) - \lambda_i \cdot w_{i-1}$ for $i \in [n]$. That is, we are working through the computation of $P(\varphi)(v)$ from right to left. Note that $w_0 = v \neq 0_V$ and $w_n = P(\varphi)(v) = 0_V$. Let i^* denote the largest index i such that $w_i \neq 0_V$. Then, we have

$$0_V = w_{i^*+1} = \varphi(w_{i^*}) - \lambda_{i^*+1} \cdot w_{i^*}.$$

This means that w_{i^*} is an eigenvector of φ with eigenvalue λ_{i^*+1} .

Now, what about when V is over \mathbb{R} ?

- Can do the same argument, except P now factors into linear and quadratic terms.
- Just need to show that we hit 0 in one of the linear terms, and not one of the irreducible quadratic terms.
- Specifically, want to show we don't get an equation of the form:

$$0_V = \varphi^2(w_{i^*}) + b\varphi(w_{i^*}) + cw_{i^*}, with b^2 < 4c$$

This is where self-adjointness comes in.

Now, what about when V is over \mathbb{R} ?

Want to show we don't get an equation of the form:

$$0_V = \varphi^2(w_{i^*}) + b\varphi(w_{i^*}) + cw_{i^*}, with \ b^2 < 4c$$

$$\langle w_{i^*}, \varphi^{2}(w_{i^*}) + b\varphi(w_{i^*}) + cw_{i^*} \rangle = \langle w_{i^*}, \varphi^{2}(w_{i^*}) \rangle + b\langle w_{i^*}, \varphi(w_{i^*}) \rangle + c\langle w_{i^*}, w_{i^*} \rangle$$

$$= \langle \varphi(w_{i^*}), \varphi(w_{i^*}) \rangle + b\langle w_{i^*}, \varphi(w_{i^*}) \rangle + c\langle w_{i^*}, w_{i^*} \rangle$$

$$= \|\varphi(w_{i^*})\|^{2} + b\langle w_{i^*}, \varphi(w_{i^*}) \rangle + c\|w_{i^*}\|^{2}$$

$$\geq \|\varphi(w_{i^*})\|^{2} - |b| \|w_{i^*}\| \|\varphi(w_{i^*})\| + c\|w_{i^*}\|^{2}$$

$$= \left(\|\varphi(w_{i^*})\| - \frac{|b| \|w_{i^*}\|}{2} \right)^{2} + \left(c - \frac{b^{2}}{4} \right) \|w_{i^*}\|^{2}$$

$$> 0.$$

So, the quadratic term can't be 0.

Definition 3.1 Let $\varphi: V \to V$ be a self-adjoint linear operator and $v \in V \setminus \{0_V\}$. The Rayleigh quotient of φ at v is defined as

$$\mathcal{R}_{\varphi}(v) := \frac{\langle v, \varphi(v) \rangle}{\|v\|^2}.$$

We can equivalently write $\mathcal{R}_{\varphi}(v) = \langle \hat{v}, \varphi(\hat{v}) \rangle$ for $\hat{v} = v / \|v\|$.

In other words, it is the length of the projection of $\varphi(\hat{v})$ onto \hat{v} .

If v was an eigenvector, then this would be the eigenvalue.

Definition 3.1 *Let* $\varphi : V \to V$ *be a self-adjoint linear operator and* $v \in V \setminus \{0_V\}$ *. The* Rayleigh quotient *of* φ *at* v *is defined as*

$$\mathcal{R}_{\varphi}(v) := \frac{\langle v, \varphi(v) \rangle}{\|v\|^2}.$$

We can equivalently write $\mathcal{R}_{\varphi}(v) = \langle \hat{v}, \varphi(\hat{v}) \rangle$ for $\hat{v} = v / \|v\|$.

Proposition 3.2 *Let* dim(V) = n and let φ : $V \to V$ be a self-adjoint operator with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Then,

$$\lambda_1 = \max_{v \in V \setminus \{0_V\}} \mathcal{R}_{\varphi}(v)$$
 and $\lambda_n = \min_{v \in V \setminus \{0_V\}} \mathcal{R}_{\varphi}(v)$

So, the vector v such that applying ϕ gives the largest "stretch" in the \hat{v} direction is the eigenvector of largest eigenvalue, and likewise for the eigenvector of smallest eigenvalue.

Definition 3.1 *Let* $\varphi : V \to V$ *be a self-adjoint linear operator and* $v \in V \setminus \{0_V\}$ *. The* Rayleigh quotient *of* φ *at* v *is defined as*

$$\mathcal{R}_{\varphi}(v) := \frac{\langle v, \varphi(v) \rangle}{\|v\|^2}.$$

We can equivalently write $\mathcal{R}_{\varphi}(v) = \langle \hat{v}, \varphi(\hat{v}) \rangle$ for $\hat{v} = v / \|v\|$.

Proposition 3.2 *Let* dim(V) = n and let φ : $V \to V$ be a self-adjoint operator with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Then,

$$\lambda_1 = \max_{v \in V \setminus \{0_V\}} \mathcal{R}_{\varphi}(v)$$
 and $\lambda_n = \min_{v \in V \setminus \{0_V\}} \mathcal{R}_{\varphi}(v)$

Proof: Let $w_1, ..., w_n$ be an orthonormal basis of evectors with evalues $\lambda_1, ..., \lambda_n$. Let $\hat{v} = \sum_i c_i w_i$. Then $\langle \hat{v}, \varphi(\hat{v}) \rangle = \langle \sum_i c_i w_i, \sum_i \lambda_i c_i w_i \rangle = \sum_i \lambda_i |c_i|^2$. Since $\sum_i |c_i|^2 = 1$, this is a weighted average of the λ_i 's, and so is maximized at $c_1 = 1$, and minimized at $c_n = 1$.

Definition 3.1 *Let* $\varphi : V \to V$ *be a self-adjoint linear operator and* $v \in V \setminus \{0_V\}$ *. The* Rayleigh quotient *of* φ *at* v *is defined as*

$$\mathcal{R}_{\varphi}(v) := \frac{\langle v, \varphi(v) \rangle}{\|v\|^2}.$$

We can equivalently write $\mathcal{R}_{\varphi}(v) = \langle \hat{v}, \varphi(\hat{v}) \rangle$ for $\hat{v} = v / \|v\|$.

Extension / Generalization:

Proposition 3.3 (Courant-Fischer theorem) *Let* $\dim(V) = n$ *and let* $\varphi : V \to V$ *be a self-adjoint operator with eigenvalues* $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. *Then,*

$$\lambda_k = \max_{S \subseteq V \atop \dim(S)=k} \min_{v \in S \setminus \{0_V\}} \mathcal{R}_{\varphi}(v) = \min_{S \subseteq V \atop \dim(S)=n-k+1} \max_{v \in S \setminus \{0_V\}} \mathcal{R}_{\varphi}(v).$$

Positive Semidefiniteness

Definition 3.4 Let $\varphi: V \to V$ be a self-adjoint operator. φ is said to be positive semidefinite if $\mathcal{R}_{\varphi}(v) \geq 0$ for all $v \neq 0$. φ is said to be positive definite if $\mathcal{R}_{\varphi}(v) > 0$ for all $v \neq 0$.

Proposition 3.5 *Let* φ : $V \to V$ *be a self-adjoint linear operator. Then the following are equivalent:*

- 1. $\mathcal{R}_{\varphi}(v) \geq 0$ for all $v \neq 0$.
- 2. All eigenvalues of φ are non-negative.
- 3. There exists $\alpha: V \to V$ such that $\varphi = \alpha^* \alpha$.

The decomposition of a positive semidefinite operator in the form $\varphi = \alpha^* \alpha$ is known as the Cholesky decomposition of the operator. Note that if we can write φ as $\alpha^* \alpha$ for any $\alpha: V \to W$, then this in fact also shows that φ is self-adjoint and positive semidefinite.

Part of argument: if $\varphi = \alpha^* \alpha$ then $\langle v, \varphi(v) \rangle = \langle v, \alpha^* (\alpha(v)) \rangle = \langle \alpha(v), \alpha(v) \rangle \geq 0$. This also means that if v is an eigenvector, its eigenvalue must be non-negative.