TTIC 31150/CMSC 31150 Mathematical Toolkit (Spring 2023)

Avrim Blum and Ali Vakilian

Lecture 5: The Real Spectral Theorem

Recap

- Eigenvectors and eigenvalues, eigenvectors of same eigenvalue form a subspace. Eigenvectors of different eigenvalues are linearly independent, inner products, norm, Cauchy-Schwartz.
- Gram-Schmidt orthogonalization, any finite-dimensional inner product space has an orthonormal basis.
- Properties of orthonormal bases: Fourier coefficients, Parseval's identity
- Adjoint of a linear transform
- Reisz representation theorem. Use to prove that every linear transformation has a unique adjoint
- Self-adjoint linear operators: eigenvalues are real, and eigenvectors corresponding to distinct eigenvalues are orthogonal.

The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi: V \rightarrow V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

- E.g., square symmetric matrices over \mathbb{R}^{n}.
- Gives a nice way to view action of such operators. Say φ has orthonormal eigenvectors w_{1}, \ldots, w_{n} with associated eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then:

For $v=\sum_{i} c_{i} w_{i}$, we have $\varphi(v)=\sum_{i} \lambda_{i} c_{i} w_{i}$.
I.e., just stretching or shrinking in each "coordinate".

The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi: V \rightarrow V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

Proof strategy:

1. Show that any such φ has at least one eigenvalue.
2. Use (1) to prove the theorem.

We'll do (2) first, then (1).

The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi: V \rightarrow V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

Proof part 2: induction on dimension of V.

- Base-case: $\operatorname{dim}(V)=1$. By part (1), there is at least one eigenvalue and eigenvector, so just scale the eigenvector to be unit-length.
- Let $\operatorname{dim}(V)=k+1$. Let w be the eigenvector we are guaranteed by part (1) and let $W=\operatorname{span}(\{w\})$. Let $W^{\perp}=\{v \in V:\langle v, w\rangle=0\}$.
- Now, the idea to finish is to (a) show that W^{\perp} is a subspace of V of dimension k, (b) show that φ restricted to W^{\perp} is a self-adjoint operator on W^{\perp} (and in particular maps W^{\perp} to W^{\perp}), and (c) apply our inductive hypothesis to W^{\perp} (which by design is orthogonal to w).

The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi: V \rightarrow V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").
(a): If $\left\langle v_{1}, w\right\rangle=0$ and $\left\langle v_{2}, w\right\rangle=0$ then $\left\langle a_{1} v_{1}+a_{2} v_{2}, w\right\rangle=0$, so it's a subspace.

Dimension is k because a basis for $W^{\perp} \cup\{w\}$ is a basis for V.

- Now, the idea to finish is to (a) show that W^{\perp} is a subspace of V of dimension k, (b) show that φ restricted to W^{\perp} is a self-adjoint operator on W^{\perp} (and in particular maps W^{\perp} to W^{\perp}), and (c) apply our inductive hypothesis to W^{\perp} (which by design is orthogonal to w).

The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi: V \rightarrow V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").
(b): If $\langle v, w\rangle=0$ want to show that $\langle\varphi(v), w\rangle=0$.

- We can use the fact that φ is self-adjoint and w is an eigenvector.
- $\langle\varphi(v), w\rangle=\langle v, \varphi(w)\rangle=\langle v, \lambda w\rangle=\lambda\langle v, w\rangle=0$.
- Now, the idea to finish is to (a) show that W^{\perp} is a subspace of V of dimension k, (b) show that φ restricted to W^{\perp} is a self-adjoint operator on W^{\perp} (and in particular maps W^{\perp} to W^{\perp}), and (c) apply our inductive hypothesis to W^{\perp} (which by design is orthogonal to w).

The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi: V \rightarrow V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").
(c): Now, just apply induction.

- Let $\left\{w_{1}, \ldots, w_{k}\right\}$ be an orthonormal basis for W^{\perp} of eigenvectors of φ restricted to W^{\perp}.
- So, $\left\{w_{1}, \ldots, w_{k}, \frac{w}{\|w\|}\right\}$ is an orthonormal basis for V of eigenvectors of φ.
- Now, the idea to finish is to (a) show that W^{\perp} is a subspace of V of dimension k, (b) show that φ restricted to W^{\perp} is a self-adjoint operator on W^{\perp} (and in particular maps W^{\perp} to W^{\perp}), and (c) apply our inductive hypothesis to W^{\perp} (which by design is orthogonal to w).

The Real Spectral Theorem

Theorem: every self-adjoint operator $\varphi: V \rightarrow V$ (which we know has real eigenvalues) has an orthonormal basis of eigenvectors (i.e., is "orthogonally diagonalizable").

Proof strategy:

1. Show that any such φ has at least one eigenvalue.
2. Use (1) to prove the theorem.

Now, need to do (1).

Existence of eigenvalues

Let's begin by assuming V is over \mathbb{C}. Then won't need self-adjointness.

Example: $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$

Existence of eigenvalues

Let's begin by assuming V is over \mathbb{C}. Then won't need self-adjointness.
Proposition 2.1 Let V be a finite dimensional inner product space over C and let $\varphi: V \rightarrow V$ be a linear operator. Then φ has at least one eigenvalue.

Proof: Let $\operatorname{dim}(V)=n$. Let $v \in V \backslash 0_{V}$ be any non-zero vector. Consider the set of $n+1$ vectors $\left\{v, \varphi(v), \varphi^{2}(v), \ldots, \varphi^{n}(v)\right\}$ where $\varphi^{i}(v)=\varphi\left(\varphi^{i-1}(v)\right)$. Since the dimension of V is n, there must exist $c_{0}, \ldots, c_{n} \in \mathbb{C}$ not all 0 such that

$$
c_{0} \cdot v+c_{1} \cdot \varphi(v)+\cdots+c_{n} \varphi^{n}(v)=0_{V} .
$$

For convenience, assume that $c_{n} \neq 0$, otherwise we can instead consider the sum to the largest i such that $c_{i} \neq 0$. What we want to do now is to factor the expression above into a product of degree- 1 terms. This is where working over \mathbb{C} will be useful.

Existence of eigenvalues

Let's begin by assuming V is over \mathbb{C}. Then won't need self-adjointness.
Proposition 2.1 Let V be a finite dimensional inner product space over C and let $\varphi: V \rightarrow V$ be a linear operator. Then φ has at least one eigenvalue.

OK, so we have $c_{0} v+c_{1} \varphi(v)+\cdots+c_{n} \varphi^{n}(v)=0_{V}$ with $c_{n} \neq 0$.
Let $P(x)$ denote the polynomial $c_{0}+c_{1} x+\cdots+c_{n} x^{n}$. Then the above can be written as $(P(\varphi))(v)=0$, where $P(\varphi): V \rightarrow V$ is a linear operator defined as

$$
P(\varphi):=c_{0} \cdot \mathrm{id}+c_{1} \cdot \varphi+\cdots+c_{n} \varphi^{n},
$$

with id used to denote the identity operator. Since P is a degree- n polynomial over \mathbb{C}, it can be factored into n linear factors, and we can write $P(x)=c_{n} \prod_{i=1}^{n}\left(x-\lambda_{i}\right)$ for $\lambda_{1}, \ldots, \lambda_{n} \in$ C. This means that we can write

$$
P(\varphi)=c_{n}\left(\varphi-\lambda_{n} \cdot \mathrm{id}\right) \cdots\left(\varphi-\lambda_{1} \cdot \mathrm{id}\right) .
$$

Existence of eigenvalues

Let's begin by assuming V is over \mathbb{C}. Then won't need self-adjointness.
Proposition 2.1 Let V be a finite dimensional inner product space over C and let $\varphi: V \rightarrow V$ be a linear operator. Then φ has at least one eigenvalue.

OK, so we have $P(\varphi)=c_{n}\left(\varphi-\lambda_{n} \cdot i d\right) \ldots\left(\varphi-\lambda_{1} \cdot i d\right)$, and $P(\varphi)(v)=0$.
Let $w_{0}=v$ and define $w_{i}=\varphi\left(w_{i-1}\right)-\lambda_{i} \cdot w_{i-1}$ for $i \in[n]$. That is, we are working through the computation of $P(\varphi)(v)$ from right to left. Note that $w_{0}=v \neq 0_{V}$ and $w_{n}=P(\varphi)(v)=$ 0_{V}. Let i^{*} denote the largest index i such that $w_{i} \neq 0_{V}$. Then, we have

$$
0_{V}=w_{i^{*}+1}=\varphi\left(w_{i^{*}}\right)-\lambda_{i^{*}+1} \cdot w_{i^{*}} .
$$

This means that $w_{i^{*}}$ is an eigenvector of φ with eigenvalue $\lambda_{i^{*}+1}$.

Existence of eigenvalues

Now, what about when V is over \mathbb{R} ?

- Can do the same argument, except P now factors into linear and quadratic terms.
- Just need to show that we hit 0 in one of the linear terms, and not one of the irreducible quadratic terms.
- Specifically, want to show we don't get an equation of the form:

$$
0_{V}=\varphi^{2}\left(w_{i^{*}}\right)+b \varphi\left(w_{i^{*}}\right)+c w_{i^{*}}, \text { with } b^{2}<4 c
$$

This is where self-adjointness comes in.

Existence of eigenvalues

Now, what about when V is over \mathbb{R} ?

- Want to show we don't get an equation of the form:

$$
0_{V}=\varphi^{2}\left(w_{i^{*}}\right)+b \varphi\left(w_{i^{*}}\right)+c w_{i^{*}}, \text { with } b^{2}<4 c
$$

$$
\begin{aligned}
\left\langle w_{i^{*}}, \varphi^{2}\left(w_{i^{*}}\right)+b \varphi\left(w_{i^{*}}\right)+c w_{i^{*}}\right\rangle & =\left\langle w_{i^{*}}, \varphi^{2}\left(w_{i^{*}}\right)\right\rangle+b\left\langle w_{i^{*}}, \varphi\left(w_{i^{*}}\right)\right\rangle+c\left\langle w_{i^{*}}, w_{i^{*}}\right\rangle \\
& =\left\langle\varphi\left(w_{i^{*}}\right), \varphi\left(w_{i^{*}}\right)\right\rangle+b\left\langle w_{i^{*}}, \varphi\left(w_{i^{*}}\right)\right\rangle+c\left\langle w_{i^{*}}, w_{i^{*}}\right\rangle \\
& =\left\|\varphi\left(w_{i^{*}}\right)\right\|^{2}+b\left\langle w_{i^{*}}, \varphi\left(w_{i^{*}}\right)\right\rangle+c\left\|w_{i^{*}}\right\|^{2} \\
& \geq\left\|\varphi\left(w_{i^{*}}\right)\right\|^{2}-|b|\left\|w_{i^{*}}\right\|\left\|\varphi\left(w_{i^{*}}\right)\right\|+c\left\|w_{i^{*}}\right\|^{2} \\
& =\left(\left\|\varphi\left(w_{i^{*}}\right)\right\|-\frac{|b|\left\|w_{i^{*}}\right\|}{2}\right)^{2}+\left(c-\frac{b^{2}}{4}\right)\left\|w_{i^{*}}\right\|^{2} \\
& >0 .
\end{aligned}
$$

So, the quadratic term can't be 0 .

Raleigh Quotients

Definition 3.1 Let $\varphi: V \rightarrow V$ be a self-adjoint linear operator and $v \in V \backslash\left\{0_{V}\right\}$. The Rayleigh quotient of φ at v is defined as

$$
\mathcal{R}_{\varphi}(v):=\frac{\langle v, \varphi(v)\rangle}{\|v\|^{2}} .
$$

We can equivalently write $\mathcal{R}_{\varphi}(v)=\langle\hat{v}, \varphi(\hat{v})\rangle$ for $\hat{v}=v /\|v\|$.

In other words, it is the length of the projection of $\varphi(\hat{v})$ onto \hat{v}.

If v was an eigenvector, then this would be the eigenvalue.

Raleigh Quotients

Definition 3.1 Let $\varphi: V \rightarrow V$ be a self-adjoint linear operator and $v \in V \backslash\left\{0_{V}\right\}$. The Rayleigh quotient of φ at v is defined as

$$
\mathcal{R}_{\varphi}(v):=\frac{\langle v, \varphi(v)\rangle}{\|v\|^{2}} .
$$

We can equivalently write $\mathcal{R}_{\varphi}(v)=\langle\hat{v}, \varphi(\hat{v})\rangle$ for $\hat{v}=v /\|v\|$.

Proposition 3.2 Let $\operatorname{dim}(V)=n$ and let $\varphi: V \rightarrow V$ be a self-adjoint operator with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then,

$$
\lambda_{1}=\max _{v \in V \backslash\left\{0_{V}\right\}} \mathcal{R}_{\varphi}(v) \quad \text { and } \quad \lambda_{n}=\min _{v \in V \backslash\left\{0_{V}\right\}} \mathcal{R}_{\varphi}(v)
$$

So, the vector v such that applying φ gives the largest "stretch" in the \hat{v} direction is the eigenvector of largest eigenvalue, and likewise for the eigenvector of smallest eigenvalue.

Raleigh Quotients

Definition 3.1 Let $\varphi: V \rightarrow V$ be a self-adjoint linear operator and $v \in V \backslash\left\{0_{V}\right\}$. The Rayleigh quotient of φ at v is defined as

$$
\mathcal{R}_{\varphi}(v):=\frac{\langle v, \varphi(v)\rangle}{\|v\|^{2}} .
$$

We can equivalently write $\mathcal{R}_{\varphi}(v)=\langle\hat{v}, \varphi(\hat{v})\rangle$ for $\hat{v}=v /\|v\|$.

Proposition 3.2 Let $\operatorname{dim}(V)=n$ and let $\varphi: V \rightarrow V$ be a self-adjoint operator with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then,

$$
\lambda_{1}=\max _{v \in V \backslash\left\{0_{V}\right\}} \mathcal{R}_{\varphi}(v) \quad \text { and } \quad \lambda_{n}=\min _{v \in V \backslash\left\{0_{V}\right\}} \mathcal{R}_{\varphi}(v)
$$

Proof: Let w_{1}, \ldots, w_{n} be an orthonormal basis of evectors with evalues $\lambda_{1}, \ldots, \lambda_{n}$. Let $\hat{v}=$ $\sum_{i} c_{i} w_{i}$. Then $\langle\hat{v}, \varphi(\hat{v})\rangle=\left\langle\sum_{i} c_{i} w_{i}, \sum_{i} \lambda_{i} c_{i} w_{i}\right\rangle=\sum_{i} \lambda_{i}\left|c_{i}\right|^{2}$. Since $\sum_{i}\left|c_{i}\right|^{2}=1$, this is a weighted average of the λ_{i} 's, and so is maximized at $c_{1}=1$, and minimized at $c_{n}=1$.

Raleigh Quotients

Definition 3.1 Let $\varphi: V \rightarrow V$ be a self-adjoint linear operator and $v \in V \backslash\left\{0_{V}\right\}$. The Rayleigh quotient of φ at v is defined as

$$
\mathcal{R}_{\varphi}(v):=\frac{\langle v, \varphi(v)\rangle}{\|v\|^{2}} .
$$

We can equivalently write $\mathcal{R}_{\varphi}(v)=\langle\hat{v}, \varphi(\hat{v})\rangle$ for $\hat{v}=v /\|v\|$.
Extension / Generalization:
Proposition 3.3 (Courant-Fischer theorem) Let $\operatorname{dim}(V)=n$ and let $\varphi: V \rightarrow V$ be a selfadjoint operator with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then,

$$
\lambda_{k}=\max _{\substack{S \subseteq V \\ \operatorname{dim}(S)=k}} \min _{v \in S \backslash\left\{0_{V}\right\}} \mathcal{R}_{\varphi}(v)=\min _{\substack{S \subseteq V \\ \operatorname{dim}(S)=n-k+1}} \max _{v \in S \backslash\left\{0_{V}\right\}} \mathcal{R}_{\varphi}(v) .
$$

Positive Semidefiniteness

Definition 3.4 Let $\varphi: V \rightarrow V$ be a self-adjoint operator. φ is said to be positive semidefinite if $\mathcal{R}_{\varphi}(v) \geq 0$ for all $v \neq 0 . \varphi$ is said to be positive definite if $\mathcal{R}_{\varphi}(v)>0$ for all $v \neq 0$.

Proposition 3.5 Let $\varphi: V \rightarrow V$ be a self-adjoint linear operator. Then the following are equivalent:

1. $\mathcal{R}_{\varphi}(v) \geq 0$ for all $v \neq 0$.
2. All eigenvalues of φ are non-negative.

Part of argument: if $\varphi=\alpha^{*} \alpha$ then $\langle v, \varphi(v)\rangle=$ $\left\langle v, \alpha^{*}(\alpha(v))\right\rangle=\langle\alpha(v), \alpha(v)\rangle \geq 0$. This also means that if v is an eigenvector, its eigenvalue must be non-negative.
3. There exists $\alpha: V \rightarrow V$ such that $\varphi=\alpha^{*} \alpha$.

The decomposition of a positive semidefinite operator in the form $\varphi=\alpha^{*} \alpha$ is known as the Cholesky decomposition of the operator. Note that if we can write φ as $\alpha^{*} \alpha$ for any $\alpha: V \rightarrow W$, then this in fact also shows that φ is self-adjoint and positive semidefinite.

